

2.4 GHz Phased Array System for Lunar Extravehicular Activity (EVA) Communications

Lucas Wray, Sarah Deitke, Baris Volkan Gurses

Motivation

- 2.4 GHz Wi-Fi links are used for EVA communications on the lunar surface.
- Compared to VHF links, 2.4 GHz links introduce 18 dB more path loss.
- This severely limits the range of communication devices on the lunar surface.
- Current NASA goal for EVA range is 0.5 km.
- A phased array can be used to increase the gain in the azimuthal plane and surpass this goal.

Technical Specifications

- 2.4 2.5 GHz (Wi-Fi band)
- 10 dB bandwidth ≥ 20 MHz (802.11b channel BW)
- Power delivered to 0.5 km ≥ -91 dBm
- 360° azimuthal coverage (resolution $\leq 30^{\circ}$)

System Design

• Front end:

- Series-fed linear patch antennas
- Butler matrices

Back end:

- □ RF switch module
- Wi-Fi module
- □ MCU

Mechanical Fixture:

- □ BNC connectors
- I Hinges

I Mechanical supports

Antenna Array Design

- Series-fed patch elements
 - Designed to 2.45 GHz
 - $\circ \quad \text{Inset feed for 50 } \Omega \text{ match}$
- 4-element linear array
 - \circ $\lambda/2$ element spacing
 - 0.060" Rogers 3006 ($\varepsilon_r = 6.15$)

	Single Element	4-Element Linear Array
Gain	8.0 dBi	15.0 dBi (broadside)
Δf_{10dB}	28 MHz	24-28 MHz
HPBW	35.5°	25.4° (broadside)

Butler Matrix Design

- 4×4 topology:
 - 4 90° hybrid couplers
 - 4 phase shifters
 - 2 crossover structures

Distributions Unit: dB, degree	Port 1	Port 2	Port 3	Port 4
Port 5	-6.12∠-38.5°	-7.58∠-113°	-7.42∠-70.8°	-7.47∠-162°
Port 6	-6.58∠-62.0°	-7.65∠12.9°	-6.48∠137.9°	-8.80∠-95.3°
Port 7	-7.37∠-92.5°	-6.60∠139.0°	-7.74∠14.1°	-6.55∠-61.1°
Port 8	-7.64∠-162°	-7.36∠-71.0°	-7.64∠-112°	-5.50∠-36.8°
Steer Angle (from broadside)	15°	-45°	45°	-15°

Back-End Design

- Wi-Fi module/MCU (ESP8266 Thing)
 - Runs high-level C code
 - Built-in Wi-Fi APIs
 - 2.4 GHz signal output
- Single pole, 12-throw switch (PE42512)
 - Bidirectional
 - Connects Wi-Fi module to one of 12 ports
 - Switch (and thus beam direction) controlled by 4 input bits
- PCB layout (Osh Park)
 - 4-layer board
 - Signal layer: 0.17mm FR408 ($\varepsilon_r = 3.67$)
 - 50 Ω microstrip lines
 - SMA I/O ports to front-end

ı.

Front-End Fabrication

Utilized Georgia Tech's Interdisciplinary Design Commons to print the front end boards on Rogers 3006 substrate and solder connectors.

Fabricated Board

With hand to show scale

Printing

ال

Front-End Measurements

Return loss as measured in VL365

VNA S11 Measurements			
Port	f _c (GHz)	Δf 10dB (MHz)	
1	2.500	N/A	
2	2.416	34	
3	2.418	35	
4	2.448	17	

•

Project Demonstration

Range Demonstration

$$d=10^{rac{G_{TdB}+G_{RdB}+P_{TdB}-P_{RdB}+2(h_{TdB}+h_{RdB})-M}{40}} \ d=10^{rac{(11.5)+(2)+(-15.22)-(-121)+2((7)+(3))-(20)}{40}} \ d=0.95km$$

Source of Values

- G_{T} = Front End Design
- G_R = Assumed
- P_T = 100 mW assumed 2dB internal loss at back end and 3 dB internal loss at Butler matrix
- P_R = ESP8266 minimum sensitivity using 802.11 b
- $h_{\tau} = 5$ meters
- h_R = 2 meters
- M = 20 dB, upper limit on lunar surface

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070025224.pdf

Coverage Demonstration

Acknowledgments

We would like to acknowledge Dr. Greg Durgin and Cheng Qi for their help, mentorship, and guidance throughout this project.

Georgia School of Electrical and Tech Computer Engineering

Thank you for listening!

