Georgia Tech

CREATING THE NEXT

Solaire Rider -Electric Commuter Car

Christopher Hooper, Daniel Bruce, Johnny Kang, Hong Yee Cheah January 17, 2020

Agenda

- Motivation/Objective
- Project Description and Goals
- Technical Specifications
- Design Approach
- Codes and Standards
- Schedule
- Marketing and Cost Analysis
- Current Status
- Group Member Roles
- Top-Level Electrical Overview

Motivation/Objective

- Today's vehicles are getting larger and larger, needing more nonrenewable fuel to travel the same distance as smaller vehicles.
- This project looks to remedy this by creating an alternative that anyone could easily adopt.
- The solution is to create a small vehicle that runs solely off electricity for short daily commutes around town.

Project Description

- The team will design an electric powertrain system to replace an existing internal combustion engine on a two-seater go-kart.
- The new powertrain will consist of:
 - DC Electric Motor
 - Lithium-ion Battery Module
 - Charging Circuit
 - Solar Panel
 - Simulated Electronic Gearbox
- The motor will also be configured to function as a generator, able to regain energy to the battery when the vehicle needs to slow down.

Goals

- General
 - Reach a minimum range of one kilometer
 - Able to seat two people

• Motor

- Able to achieve a cruising speed of 30 miles per hour
- 2-3 horsepower
- 2-3 kilowatts
- Battery
 - Output enough power to drive a 24 V, 2 horsepower electric motor
 - Enough capacity to drive for at least 1 kilometer
 - Able to be safely charged and discharged
- Electronic Gearbox
 - Allows manual control of the motor's torque and speed through six separate states/gears

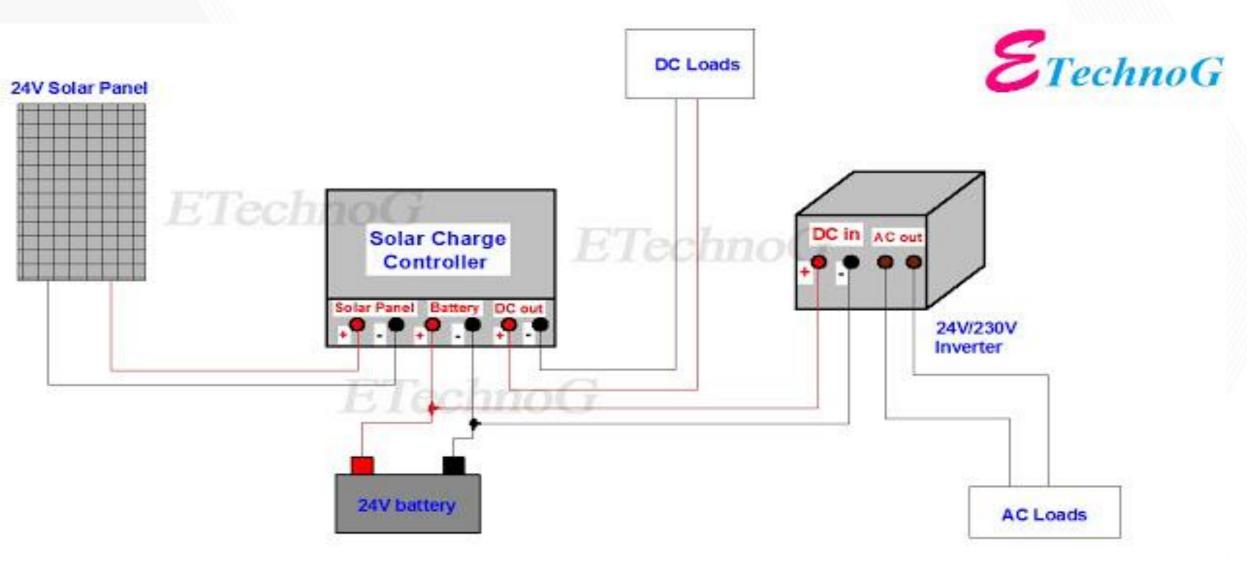
Technical Specifications

Features	Specification						
Capacity	232 Ah, 5.3 kWh						
Height	3.1 in						
Width	11.9 in						
Length	26.2 in						
Weight	55 lbs.						
Bolt Size	M8						
Voltage nominal	3.8V/Cell, 22.8V/Module						
Charge voltage cut-off	4.2V/Cell, 25.2V/Module						
Discharging cut-off	3.3V/Cell, 19.8/Module						
Maximum Discharging Current (10 sec.)	750 A						

Table 2. SOLAR-PANEL SPECIFICATIONS									
Features	Specification								
Size (Height x Width x Length)	40 x 1 x 27 in								
Amperage	5.6 A								
Material	Polycrystalline Silicon								
Weight	3.5 lbs.								
Solar Panel Type	Monocrystalline								
Voltage	24V								
Wattage	100 W								
Number of Panels	3								
Features	Flexible, Outdoor, Weatherproof								

Technical Specifications

Table 3. SOLAR-PANEL CONTROLLER SPECIFICATIONS									
Features	Specification								
Size (Depth x Height x Width)	9.37 x 6.81 x 2.85 in								
Amperage	30 A								
Voltage	24 V								
Wattage	780 W								


Table 4. MOTOR SPECIFICATIONS							
Features	Specification						
Size (Length x Width x Height)	35 x 15 x 15 cm						
Weight	17 kg						
Output Power	4 kW						
Voltage	24 V						
Туре	DC Motor						
Torque	10 N*M						
Speed	3100 RPM						

Features	Specification
Size (Length x Width x Height)	58.5 x 43 x 36 in
Weight	330 lbs.
Wheelbase	50 in
Weight Capacity	400 lbs.
Ground Clearance	4 in

of similar product.

Design Approach

[1] Wiring Diagram of Solar Panel

Design Approach-Choosing components

DC Motor? AC Motor?

- Solar panel generates DC output
- AC motor needs inverter->Increase overall weight->Affect the drive range
 - DC motor

Pre-built? Build own solar panel charging controller?

- Possibility of failure
- Lack of time to build perfectly
- Economic efficiency
 - Buy a pre-built

Design Approach-Calculations

Charge/Discharge time(hr) = Battery Capacity(Wh)/Wattage(W)

- Battery capacity : 5.3kWh, Three solar panel charge rate : 100W*3 = 300W
- Total estimated charging time : 17.67hrs

• Circumference(miles) = 2π *Radius

- Radius : 5.5inch
- Circumference : 0.00054miles

Go Kart Speed(Mph) = Motor Speed(RPM)*Circumference(miles)

- Motor Speed : 3100 RPM, Circumference : 0.00054miles
- Go Kart Speed : 45.35mph

Code and Standards

- According to the Georgia Department of Driver Services, all commercial vehicles less than 25 years old must include:
 - Service Brakes
 - Parking Brake
 - Steering Mechanisms
 - Lighting Devices and Mechanisms (headlights, blinkers, etc.)
 - Horn
 - Windshield
 - Windshield Wipers
 - Coupling Devices (alignment)
 - Rear Vision Mirrors
 - Emergency Equipment (airbag, seatbelt, etc.)
 - Doors
 - Frame
 - Tires (must have at least 4/32 of an inch of tread on front tires and at least 2/32 of an inch of tread on all other tires.)

Code and Standards

Table 6. SPEED LIMITS IN GEORGIA								
Area	Speed (MPH)							
Urban or Residential Districts	30							
Unpaved County Roads	35							
Rural Interstate	70							
Urban Interstate or Multi-Lane Divided Highway	65							
Other	55							

Schedule

																						_																					
	Scrolling Incre	ment: 42		Decemb	Janu		11 12 13 14		2 18 19 3	0 24 22 2	53 D4 DE	SK 37 38	. 28. 20. 2	 Febru			11 15	13 14 15	w. 17 1	10.50	54 55 53	1 04 05 0	w. 07 08	25 1 2		Marc		5 11 15	13 14 15	W. 17. 1	8 19 30	21 22 24	34 35 3	14 27 26	29 30 3		April			15 15 1	1	17 58 55	20. 21
				<			14 17 M		1 10 10 6			ev el ev			• •	0 0 0	11 14		10 II N	0 10 60		>					0 0 0	у II 14		10 II I	0 10 10	el ee ei			20 30 3				<i>v</i> % II				av a1
Letter Milestone Descript Category	Prerequisite Pro	ogress Start	No. Dags	TVT	: м т ч	v 1 e :	: s м т	т ч т		a t v i	r r s	8 M T	v 1 1	м т ч	T P	s s M	v v	7 F S	s m T	v 1		M T 1	v 1 1	\$ \$ N	4 T 4	T F S	8 M T	v 1		M T 1	/ T / I	s s M	v v	T F S	* M T	v 1	r s s	m t v	T F S	\$ M 1	r v t		мт
Design																																											
A Decide Purchase On Track		25% 96/2020	14				i i i i																																				
B Purchase & On Track	A	0% 1/20/2020	14																																								
Shipping C Charging CKT On Track	в	0% 1/20/2020	14																																								
D Feedback Control On Track	8	0% W20/2020	14																																								
E Virtual Gearbox On Track	8	0% W20/2020	14																																								
F Power Flow On Track		0% ₩20/2020																																									
h di da 18a d									┼┼┦																																		
H Individual Part On Track Testing	BF	0% 927/2020	7																																								
Re-design using the I measured non-ideal On Track parts	н	05: 1/31/2020	7																																								
J Design Completion Goal	I.	0% 2/6/2020	1												•																												
Assembly																																											
K Find Workspace on On Track Campus	н	0% 9392020	10											 																													
L Get the Kart on On Track Campus	К	0% 2/10/2020	1																																								
M Strip Kart On Track	ι	0% 2/10/2020	4																																								
N Assemble On Track Prototype	м	0% 2/14/2020	21																																								
O Prototype Goal Completion	N	0% 3/5/2020	1																							•																	
Milestones																																											
P Expo Goal	R	4/20/2020) 1				+++																																				٠
Q Oral Presentation Milestone	ş	1/6/2020	14	\square	PPP		999	PPI	- P P												++	$^{+++}$																					
R Final Demo Milestone	v	4/13/2020	7																																					PI	PP	PPP	
s 4011 Project Goal		1919/2019	1																																								
Proposal Test							++++																																				
T Calculate Design Herb Bird	J	2/6/2020	з																																								
U Design High Rick	N	3/6/2020																																									
Verification/Tuning V Test Drive High Risk.	U	3/23/2020																																									
	-						+++															+++																					
				111																																							

Marketing and Cost Analysis

Target market: individuals traveling short distances (with minimal cargo) and favor renewable energy

The total cost for the parts is \$3,213. (cost breakdown in next few slides)

Estimations were made for the microcontroller, cables, and packaging

Marketing and Cost Analysis: Prototype

Table 7. PRO	DTOTYPE COST					
Part	Cost (\$)					
Go-Kart Body	965 [7]					
Tesla Model S Battery Module	1,580 [8]					
WindyNation Solar Panel	233 [9]					
Alibaba DC Motor	135 [10] bulk=130					
Microcontroller & Booster Pack	50					
Cables/Miscellaneous	150					
Packaging/Shipping	100					
Total Part Cost	3,213					

Marketing and Cost Analysis: Development Hours

Table 8. Development Hours Per Engineer							
Labor	Number of Hour						
Weekly Meetings	50						
Report Preparation	45						
Research	5						
Software Design	25						
Hardware Design	40						
Assembly	10						
Testing	10						
Total	185						
Cost at \$34/hr [11]	6,290						

• Labor costs were determined by using the average hourly pay for an entry level electrical

engineer of \$34/hr. Multiplying the labor cost for four engineers comes out to be \$25,160 Get

Marketing and Cost Analysis: Total Development Cost

Development Component	Cost (\$)						
Parts	3,213						
Labor	25,160						
Fringe Benefits, % of Labor	7,548						
Subtotal	35,921						
overhead, % of Material, Labor, & Fringe Benefits	43,105						
Total Development Cost	79,026						

• Table 9 shows the total development cost of \$79,026 for the project assuming 30% fringe benefits of labor and 120% overhead on materials/labor/fringe benefits.

Marketing and Cost Analysis (continued)

Assumptions:

- The production run will run five years, in which 5000 units will be sold
- The parts cost is estimated at a 10% bulk discount
- The labor cost is based on a technician getting paid \$20/hr to assemble and test the unit.
- The marketing and advertising for the Solaire rider will be roughly 10% of the total input cost.
- The amortized development cost is the total development cost of \$79,026 divided by 5,000 units to result in \$16.

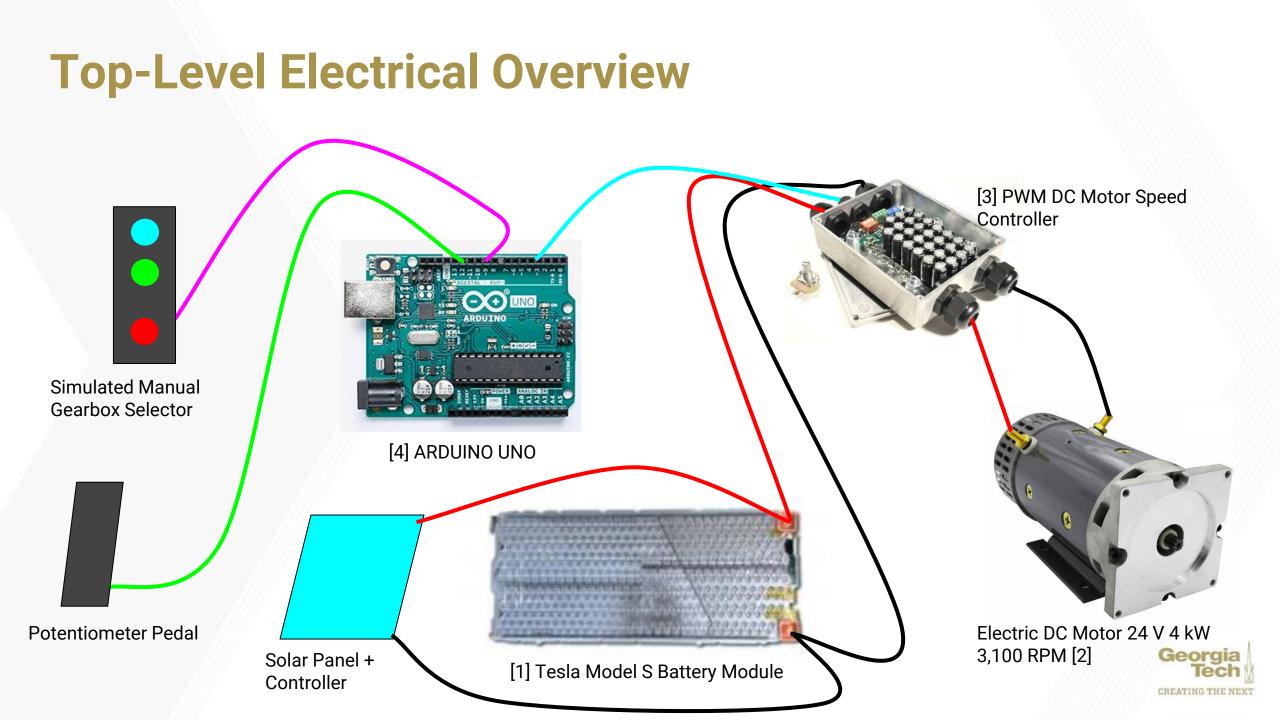
Marketing and Cost Analysis: Price Per Unit

Table 10. DECISION OF PRICE PER UNIT (based on 5,000 unit production)							
Aspect of Development	Cost (\$)						
Parts Cost	2988						
Assembly Labor	40						
Testing Labor	20						
Total Labor	60						
Fringe Benefits, % of Labor	18						
Subtotal	3066						
Overhead, % of Material, Labor, & Fringe Benefits	3679						
Subtotal, Input Costs	6745						
Sales Expense	675						
Amortized Development Costs	16						
Subtotal, All Costs	7,436						
Profit	2,562						
Selling Price	\$10,000						

Current Status

 Motor and Motor Controller have been decided and need to be ordered next week, Tuesday January 21, 2020.

- Battery and Solar Panel will be borrowed from ECE Senior Design Lab.
- Meetings will take place on Wednesday and Friday at 11:00 AM


- Need to prepare the new meeting space.

Group Member Roles

Team Leadership	Christopher Hooper
Project Management	Moongyu Kang
Webmaster	Hong Yee Cheah
Expo Coordinator	Christopher Hooper
Documentation Coordinator	Daniel Bruce
Real-Time Coding	Hong Yee Cheah
Analog Design	Daniel Bruce
Mechanical Design and Assembly	Moongyu Kang

Design Approach Image Sources

[1] "Wiring Diagram of Solar Panel with Battery, Inverter, Charge controller and Loads.," ETechnoG. [Online]. Available: https://www.etechnog.com/2019/01/wiring-diagram-of-solar-panel.html. [Accessed: Nov. 18, 2019].

Top-Level Electrical Overview Image Sources

[1] "Tesla Model S Lithium Ion Battery 18650 EV Module - 22.8 Volt, 5.3 kWh," EV West - Electric Vehicle Parts, Components, EVSE Charging Stations, Electric Car Conversion Kits, Feb. 24, 2017 [Online]. Available: https://www.evwest.com/catalog/product_info.php?products_id=463&osCsid=rp0cj2i33tp2j88tnj80dto4e5. [Accessed: Nov. 18, 2019].

[2] "Electric Dc Motor 24v 4kw 3100Rpm," Alibaba. [Online]. Available: https://www.alibaba.com/product-detail/Electric-Dc-Motor-24v-4kw-3100Rpm_60817220057.html?src=sem_ggl&mark=shopping&cmpgn=1666259716&adgrp=66971409960&locintrst=&locphyscl=1015254&ntwrk=g&am p;device=c&dvcmdl=&position=1o2&pla_adtype=pla&pla_mrctid=140283378&pla_channel=online&pla_prdid=60817220057&pla_country=US&am p;pla_lang=en&pla_group=293946777986&pla_localcode=&gclid=Cj0KCQiAtrnuBRDXARIsABiN-7C8IPhxTP3S4O5fa9S8Kfqzz8r75fN7H3nBC5at0lhaEYrLn2YX3QaAlh1EALw_wcB#shopping-ads. [Accessed: 18-Nov-2019].

[3] "200A limit 50V 12V 24V DC motor Speed Controller PWM waterproof Arduino RS232," eBay. [Online]. Available: https://www.ebay.com/itm/200A-limit-50V-12V-24V-DC-motor-Speed-Controller-PWM-waterproof-Arduino-

RS232/183088343577?_trkparms=aid%3D555021%26algo%3DPL.SIMRVI%26ao%3D1%26asc%3D20191002091506%26meid%3D1cc4fc95efa54badbe9ec52e7cf04b7f%26pid%3 D101103%26rk%3D2%26rkt%3D5%26mehot%3Dag%26sd%3D183220731414%26itm%3D183088343577%26pmt%3D1%26noa%3D0%26pg%3D2332490&_trksid=p2332490.c10 1103.m3021. [Accessed: 15-Jan-2020].

[4] "ARDUINO UNO R3 [A000066]," Amazon. [Online]. Available: https://www.amazon.com/Arduino-A000066-ARDUINO-UNO-R3/dp/B008GRTSV6. [Accessed: 15-Jan-2020].

