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Executive Summary 

An existing robotic blimp (GT-MAB) platform was designed to offer long flight duration, quiet 

sound profile, and safety for collisions. However, in order to execute sensing tasks successfully, 

odometry estimation needs to be performed onboard so that the blimp can know its location. The 

proposed project is modifying hardware and expanding perception capacity for the robotic 

blimps by building a visual odometry system, using a monocular camera to estimate odometry 

through its movements. The proposed project will potentially unleash SLAM capacity for the 

blimp. Moreover, spatial relationships on objects sensed could be established and algorithms 

such as automatic navigation can be built upon.  

The modified hardware system will include the blimp itself, an onboard camera and an IMU 

sensor. A separate workstation will support the robotic blimp by processing sensor data 

transmitted and issuing control commands via 5.8GHz transceivers. Deep learning techniques 

will be used to estimate odometry from visual inputs and IMU data. DNN model will be trained 

using data provided by a motion tracking system and should be able to apply on sensor data in 

any unknown environments to generate an estimation of robot odometry. The system will be 

prototyped in a virtual environment with Gazebo and ROS, or similar software where virtual data 

can be generated. The performance of the system will be measured by comparing the estimated 

odometry calculated by the system and provided by ground truth supported by simulation 

software (prototype) and a motion tracking system (real world). Less difference in odometry 

between estimation and ground truth will indicate better system performance.  
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The expected outcome will be a blimp with an attached camera and IMU sensor with the 

capacity of knowing its own location during any flights through visual odometry software. The 

building costs mainly from hardware mentioned above and will be at $200. With anticipated 

replacements for malfunction parts caused by possible control failures of the aerial robot, a total 

estimation will be around $400. 

Nomenclature: 

Acronyms Definition 

CNN Convolutional Neural Networks 

DNN Deep Neural Networks 

FAA Federal Aviation Administration 

GHz Gigahertz / 109 Hertz 

GPL Gnu-Permissive License 

GT-MAB Georgia Tech Miniature Aerial Blimp 

I2C Inter-Integrated Circuit 

IMU Inertial Measurement Unit 

kHz Kilohertz / 103 Hertz 

LSTM Long-Short Term Memory 

NTSC National Television System Committee 

PCB Printed Circuit Board 

ROS Robot Operating System 

SLAM Simultaneous Localization and Mapping  

UAV Unmanned Aerial Vehicle 

VO Visual Odometry 

 



1 

XXLs (Team 30, ECE4011A) 

Deep Monocular Visual Odometry For Robotic Blimps 

1. Introduction 

The project is building visual odometry algorithms for robotic blimps to estimate the location 

and direction through a monocular camera and associate IMU data. The system consists mainly 

of a robotic blimp, an IMU sensor, a monocular camera, and a 5.8GHz transceiver system. The 

system will cost around $200 in total, and with probable replacement costs for malfunction parts 

caused by possible control failures of the aerial robot, the team is requesting $400 to develop the 

system. 

1.1  Objective 

The objective of the project is to modify existing blimp platform hardware and to create a deep 

learning visual odometry algorithm for robotics blimps to estimate location and direction through 

images captured by a monocular camera and data collected by an IMU sensor. The mounted onboard 

camera and IMU sensor will provide the system with a continuous stream of images and IMU data. 

A deep learning model will be created and trained using both virtual and real data with ground truth 

provided by simulation software and a motion tracking system. The trained model will take in 

images and IMU data and provide the robot with knowledge of the trajectory traveled by the robot, 

as well as the location and direction of the robot itself.  

The expected system will achieve high precision localization capability with only a camera and an 

IMU sensor and without any information provided by external resources such as motion tracking 

systems. The performance of the visual odometry system will be evaluated by comparing the 

odometry estimation with ground truth captured by motion tracking systems. Less difference will be 

an indication of a better-performed system. 
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1.2  Motivation 

Persistent environmental monitoring, infrastructure inspection, and security surveillance are essential 

for large indoor facilities to provide safety and comfort. Existing aerial sensing solutions are mainly 

for outdoor applications. They are not suitable for human-occupied indoor environments due to short 

flight duration, disturbing noise level, and safety concerns. Existing robotic blimps (GT-MAB) are 

designed to offer long flight duration, quiet sound profile, and safety for collisions. The technology 

can potentially fill the market vacancy for indoor aerial sensing, as well as research and education 

purposes. 

However, in order to establish spatial relationships of objects sensed and execute sensing tasks 

successfully, odometry estimation needs to be performed on board so that the blimp can know the 

trajectory it traveled and its location. Due to the high costs and inconvenience of building motion 

tracking systems in large areas such as datacenter and warehouses, using visual sensors to estimate 

robots’ odometry is a more affordable and accessible solution. The motivation of the project is to 

build an odometry estimation and localization system by applying deep learning on camera inputs 

and IMU data. With visual odometry estimation, mapping and localization for the blimp can be 

achieved and autonomous navigation algorithms can be built upon, in an affordable and accessible 

fashion.  

The development of the visual odometry algorithm is critical for blimps to achieve autonomous 

indoor sensing features such as tools for indoor map building. With a combination of other software 

such as autonomous navigation algorithms, usages of blimps can be extended to infrastructure 

inspection and security surveillance for large indoor areas such as warehouses and data centers. 
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1.3 Background 

Visual odometry is critical for robots to perform a perception task because localization is always 

essential for associating spatial relationships. Due to the software nature of visual odometry and 

its reliance on fast hardware, until the early 2010s, application of visual odometry primarily 

exists in the fields of academia and pure research, with the application on martian rover being the 

most prominent [1]. Recent application utilizing visual odometry orients around the autonomous 

car and drone companies. Skydio uses 13 cameras to perform its visual-based simultaneous 

localization and mapping task, which is a combination of visual odometry and localization tasks 

and puts the price of the entire drone at $1999 [2]. A competing company of Skydio, DJI, 

announced a hardware platform for visual odometry platform research priced at $1249 [3, 4] in 

2015.  

Deep learning has proved its power in processing visual information. In tasks such as object 

segmentation and image processing has driven research on applying deep learning on visual 

odometry. Research on deep visual odometry with monocular cameras mainly focused on technical 

issues of the spatial ratio. Correct spatial ratios are difficult to be obtained from a monocular camera 

due to hardware constraints. Recent research combining visual inputs and IMU data showed 

promising results.  

On the other hand, despite the availability of hardware platforms for deep and conventional 

visual odometry algorithms, odometry methods rarely exist as a standalone ready-to-ship 

product. The majority of design comes as a proprietary part of a bigger product such as those for 

Skydio and DJI, and other designs are released as open-source projects aimed at promoting 

research in the field. SfMLearner is a deep visual odometry project open-sourced on GitHub 

done by Google. This work features in its ability to conduct unsupervised deep learning and 

generating depth data with a single-view camera [5]. OpenVSLAM is another open-source 
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GitHub project for building visual odometry research with fully modular design and 

compatibility across multiple camera models as its primary feature [6].  

1.4  Proposal Organization 

The proposal is organized to first cover project descriptions, requirements and specifications (Sect. 

2), followed by engineering specifications (Sect. 3). Section 4 focuses mainly on technical 

approaches in the design as well as analyzation of the decision chosen. Project demonstration (Sect. 

5), project milestones and timeframe (Sect .6), marketing and costs analysis (Sect .7) will then be 

covered. Current status and leadership roles will be explained at the last. 

2. Project Description, Customer Requirements, and Goals 

The appropriate visual odometry algorithm for GT-MAB will be designed and prototyped by the 

team. The visual odometry algorithm would be effectively and efficiently estimating the location 

and direction of the robotic blimp based on the image captured by the monocular camera and the 

data collected by the IMU. The odometry of the whole system will be updated properly as well. 

The critical design of the project is implemented in three steps: stable image acquisition, neural 

network implementation and odometry updates.  

Targeted users of the project would be individual users that needs low-cost indoor monitoring 

devices, laboratory researchers who carry out researches focus on VO algorithms and DNN and 

industry companies that make drones and blimps. The stakeholders of this project include 

individual customers, industrial manufacturers and school labs for either educational or research 

use. More details are listed in Stakeholders 2x2 table below: 

 



5 

XXLs (Team 30, ECE4011A) 

Table 1. Stakeholders 2x2 Table 

Influence (Low - High) Individual Customer for indoor 

aerial sensing 

Drone companies, 

Companies of indoor monitoring 

systems 

Blimps companies, 

Companies of specialized DNN 

chips 

College Labs involving VO research, 

computer vision and DNN 

                         Interest (Low - High) 

 

The customer requirements of this project are listed below: 

1. The blimp is able to work for long hours and will not be destroyed easily. 

2. The estimation of location and direction is consistent and instant. 

3. The odometry is reliable and precise. 

4. The price of the whole system is affordable. 

The final product should offer reliable and precise estimation of the location and direction of the 

blimp. Within the long hours that the blimp keeps capturing the information from indoor 

environment, the odometry should be accurate without external resources. The target price for 

the product is about $200 and that of the replacement units is below $100.  
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 The system is expected to continuously collect visual information, i.e. images of the 

surroundings through the monocular camera equipped and data from the IMU sensor attached. 

The system needs to be working ideally more than 8 hours after every full charge. The system 

will utilize data provided by a motion tracking system to train the DNN. When the blimp is 

wandering around an unknown indoor environment and keeps collecting essential information, 

the system needs to preprocess the images from frame to frame to offer stable inputs for the 

neural network. The DNN is responsible for updating the odometry and providing an estimation 

of the environment with more than 90% accuracy based on the information fed in a high 

frequency. Accordingly, associated engineering performance metrics include long-hour working 

time (more than 8 hours), accurate and precise odometry estimation, reliable camera devices and 

IMU sensor. A QFD chart that illustrates customer needs and engineering specification is below: 

Table 2. QFD Specializing Customer Needs and Engineering Requirements 

 

 

The blimps are very lightweight and can only carry a limited sensor. Currently the blimps only 

carries a monocular camera and RGB is the only source of odometry estimation, which induces 

further problems: visual odometry misses the scale from the image capturing process thus requires 
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extra calibration of the images, otherwise it is unrealistic to expect the blimp to work properly in an 

unknown environment. The current system needs to be outfitted an extra IMU to produce scale 

information. 

To sum up, the features of the system include: 

1. smooth movement of blimp upon remote control 

2. real-time analysis of image and sensor data through DNN 

3. reliable connection through I2C between IMU and main controller 

4. enduring operation hours and add-on devices 

3. Technical Specifications 

The two primary specifications for the project would be estimator inference time and maximum 

deviation distance. Table 3 contains the relevant specifications for those two aspects. Consider that 

blimps travel at a maximum speed of 0.5m/s and a desired maximum update distance to be 2.5cm. 

This would derive the odometry update frequency to be around 20Hz, which leads to a maximum 

inference time of 50ms. The maximum deviation is a measure of the accuracy of the system and for 

the current moment, the tolerance of deviation is set to 10% of traveled distance. Table 3 contains 

relevant specifications for the design.  

Table 3. Technical Specifications for the Design 

Item Specifications 

Inference Time 50ms 

Maximum Deviation 10% of traveled distanced 
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4. Design Approach and Details 

4.1 Design Concept Ideation, Constraints, Alternatives, and Tradeoffs 

Ideation 

The objective of this project is to use consecutive monocular images and IMU data to obtain any 

translational information to update the blimp’s odometry, through a trained neural network. 

Thus, there are three main functions needed to be implemented: stable images acquisition, neural 

network implementation and odometry update.  

In compensation with the non-linear dynamics of the blimp during operation, the images 

captured by the onboard camera should undergo correction that would stabilize the image from 

frame to frame. Training the neural network requires training and testing data and they can be 

created by associating monocular camera inputs and IMU data with ground-truth odometry 

captured by motion capturing system. The largest portion of work, however, lies within training 

and fine-tuning the neural networks. The choice of the number of hidden layers and the number 

of nodes in the hidden layers will all potentially affect the accuracy and the training time of the 

neural network. The more hidden layers we use, the more capability for fitting input data, 

resulting in potential increase in accuracy but at the same time making the neural network 

training much harder and time consuming.  

Alternatives 

The majority of design comes as a proprietary part of a bigger product such as those for Skydio 

and DJI, and other designs are released as open-source projects aimed at promoting research in 

the field. SfMLearner is a deep visual odometry project open-sourced on GitHub done by 

Google. This work features in its ability to conduct unsupervised deep learning and generating 
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depth data with a single-view camera [5]. OpenVSLAM is another open-source GitHub project 

for building visual odometry research with fully modular design and compatibility across 

multiple camera models as its primary feature [6].  

It is also possible to train the neural network using the data that directly map their input to the 

positional information. In that case, the process of updating the transitional data to the odometry 

is eliminated, making the entire computation more efficient. However, this change is likely to 

make training more challenging. More hidden layers are expected to be added to compensate for 

the increasing nonlinearity between the input data and the output data. This option will also be 

more error-prone by subjecting all the error to the performance of the neural network. Thus, 

obtaining the most accurate neural network is vital to making this option work.  

Constraints 

One significant constraint for this project is that the extremely light-weighted body of the 

aircraft, making it susceptible to disturbance and not suitable for outdoor applications. Thus, the 

blimp is limited to indoor application scenarios. The light-weighted body also puts constraints 

over its carrying capacity: heavy sensor like radar is unable to be mounted on the aircraft; camera 

and IMU are the only two sensors that we can rely on. 

Another constraint is due to the very nature of visual odometry: the scale is missing from the 

image capturing process. So, either we need a precomputed map of the indoor environment or we 

need a fiducial object (an object with known dimensions) to calibrate the image into a known 

scale. Putting the aircraft into an unknown environment and expect it to work is simply 

unrealistic in this case. The missing scale is the reason why we integrate an IMU into the system, 

and the details of this implementation will be further discussed below. 

Trade-offs 

One main trade-off is the quality of the image transfer and the real-time processing capacity of 

the system. Transmission of the camera-captured images are first delivered to the radio base 
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through serial communication and then transferred to the lab computers via wireless 

transmission. The network congestion can cause evident delays in our real-time system. A series 

of convolutional neural networks can concurrently process multiple images while the down-

sampled output can affect the image quality. The second trade-off is the mobility and stability of 

the blimps. Setting a higher moving speed can traverse the environment more efficiently, but the 

blimp is less likely to be stable, which would hamper high-quality image gathering. 

This project is targeting at high updating frequency for the real-time. Therefore, the speed of the 

network would also be one of the essential design considerations. Because image processing and 

neural networks inference are performed on a ground workstation, dedicated computation 

hardware such as GPU can be used to shorten the calculation time.  

4.2 Preliminary Concept Selection and Justification  

Selection Criteria 

The objective is defined to be visual odometry methods that utilize deep learning methods. 

Considering the constraint of our hardware platform, which is a lightweight blimp that only houses a 

single camera onboard, the selection criteria for the design have the focus on “monocular” and deep 

visual odometry methods. While more than several visual odometry methods came as promising 

candidates: [7] and [8], DeepVO [9] stands out in its end-to-end elegance and a compact structure 

for modification as the core algorithm for our design. 

System Overview 

The implementation of the deep visual odometry estimator involves a software implementation 

of the algorithm and the hardware platform that collects the ground truth training data as well as 

the testing platform. Figure 1 is a block diagram that visualizes the conjugation of the two 

systems. 
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Figure 1. Software Implementation Overview. 

The motion capture system, with the modified blimp platform, will provide the necessary ground 

truth sensor data for the software implementation. The software implementation would utilize the 

ground truth data to train a neural network estimator. The effectiveness of the application will be 

evaluated in a simulated environment before moving to the hardware platform. This virtual 

environment will be discussed in the analyses and experiment section. 

Software Design 

Due to the constraint present in monocular visual odometry, an estimator that only relies on 

camera inputs is likely to generate much noise and very unreliable. On top of the visual 

estimator, we would utilize an onboard IMU to help create more reliable output, and the design is 

thus split into two components: 

The first core component of our deep visual odometry estimator is the method described in [9] 

published in 2017. The paper proposed an end-to-end deep neural network for monocular visual 

odometry named DeepVO. DeepVO has the architecture of recurrent convolutional neural 

networks (RCNN). Figure 2 shows the proposed architecture of DeepVO. At each time step, the 

two consecutive images are stacked together so that DeepVO can learn how image changes 

correspond to motion information. Conceptually, the convolution part of the network would 

transform the input images into a different feature space as feature vectors, and the recurrent 



12 

XXLs (Team 30, ECE4011A) 

section of the system would attempt to locate the temporal relation between feature vectors to 

generate an output of pose. 

 

Figure 2. Neural network architecture of Deep VO.  

Consider the fact that we are utilizing monocular visual odometry, there lacks a proper scale 

transformation between each consecutive image input. This would potentially result in overall 

offset of generated odometry. To compensate for this issue, an IMU would be utilized in 

conjunction with the deep visual odometry estimator. IMU generates the motion information and 

while it being a semi-reliable input source of odometry, IMU often suffers from inaccuracy and 

offset error overtime. Having an IMU input to the network would solve the problem of scale 

variant in pure monocular deep visual odometry and resolve the problem of unverifiable noisy 

IMU sensor data. The selected IMU module would be BNO055 and is within the weight limit of 

the current platform. 

In summary, the software implementation would be integrating the output of a monocular deep 

visual odometry and the onboard IMU sensor data to generate a reliable odometry message. 

Figure 3 is a summarization of the software implementation. 
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Figure 3. Odometry estimator overview. 

It is worth noting that the team currently does not have a verified method for combining the 

motion information with the two different sources. This is still an ongoing investigation, and 

there are multiple paths available. One would be a traditional sensor fusion approach from the 

aspect of the adaptive filter, and the other would be a deep learning approach. The design team is 

uncertain which method would be the best approach, and we plan to adapt our approach as the 

implementation goes on. 

Implementation Details 

Due to the plentiful availability of machine learning toolboxes in Python, a significant portion of the 

software implementation would be done in Python, utilizing Tensorflow. The critical path lies on the 

DeepVO since the entire implementation is very linear except for the part where we wish to obtain 

two sources of motion information. Motion information from IMU is expected to be relatively 

straightforward, and therefore DeepVO implementation is determined to be a critical component of 

the design. 

If the DeepVO fails to yield consistent results, we will utilize other visual odometry methods. They 

would be selected from the poll of unselected ways that were mentioned earlier in section 4.1. 

Infrastructure and Hardware Platform 

The odometry estimator would be applied on a blimps system currently developed at Georgia Tech 

Systems Research Lab. The blimp is an unmanned aerial vehicle that is designed to be interaction 
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friendly. Figure 4 is an image of the blimps. It uses helium to provide the majority of atmospheric 

buoyancy. An Arduino Fio controls it with a custom PCB. 3 TB6612FNG drivers are used to driving 

5 Qx Blade Pic motors. It houses a 2.4 GHz NTSC camera and interfaces with the rest of the system 

through radio. The current blimp does not contain an IMU and BNO055 is the intended IMU 

addition to the system. 

 

Figure 4. Blimps platform from bottom viewpoint 

Currently the lab has a motion capture system for the blimps to acquired ground truth odometry data. 

This will be the primary source of training data into the deep visual odometry estimator. 

4.3 Engineering Analyses and Experiment 

The visual odometry estimator is expected to be evaluated in a simulated environment before 

applying to the hardware platform. Gazebo is chosen as the simulated environment. Gazebo is a 

physics simulation toolbox widely used in the robotics community. It is chosen for its accurate 

modeling of the world, sensor noises as well as its infrastructure around ROS (Robot Operating 

System). ROS is another widely used robotic framework for interfacing with robots. 
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The design would be run in the simulated environment with simulated sensor inputs. Figure 5 is 

an illustration of the test environment. The primary concern of the design would be its deviation 

from true odometry. Since the algorithm would be run in a simulated world, access to ground-

truth value is available. The output of implemented odometry estimator and ground truth value 

would be compared and evaluated first. The design of the system would be reiterated based on 

the result. 

 

Figure 5. Simulation and experimentation environment overview. 

Should the deviation remained in a reasonable tolerance, the experiments would proceed to 

benchmark the inference time of the estimator and simplify the model if necessary. The 

maximum speed usually determines the inference time limit the vehicle can travel. Since the 

blimps travel at about 0.5m/s, a target odometry update frequency would be 20Hz so that the 

maximum distance between each update would be 2.5cm. This would set the inference target to 

be at 50ms. The design would prune out unnecessary sections of the network to improve its 

inference time until it meets the standard. 
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4.4 Codes and Standards 

1. MIT Software License: Permissive free software license to put on software packages that 

imposes minimal restrictions on reuse. This permits our design to be reused by most people on 

the internet yet restricted us from using certain proprietary packages such as Intel MKL library 

with GPL license. 

2. FAA Part 107: Drone regulation in public air space. UAVs must fly under 120m and 

under 45m/s during the day. This regulation does not explicitly regulate this project since the 

blimps are not capable of outdoor operation, it provides a guideline for the speed of recreational 

drone operation and a guideline for the target frame rate of the network output rate we need to 

achieve. 

3. Inter-Integrated Circuit (I2C) is a serial protocol for two-wire interface to connect IMU 

and the main controller on the blimp. It features a maximum clock frequency of 400 kHZ and 

can be used to connect low-speed devices like microcontrollers, EEPROMs, A/D and D/A 

converters, I/O interfaces and other similar peripherals in embedded systems [10]. 

4. Universal Serial Bus (USB) is used to connect the Xbox controller and the PC. It features 

a high speed of 480 Mbit/s and multiple peripheral devices connections [11]. 

5.  Project Demonstration 

The demonstration of the algorithm will take place at Georgia Tech. To ensure the capability of 

demonstrating the performance of the system, the system needs to be demonstrated in the lab at 

Tech Square Research Building where the motion tracking system is installed. The deep visual 

odometry system should be demonstrated through the real-time odometry estimation of a blimp 

using camera and IMU data. The formal demonstration will consist of the following: 

1. The user places the blimp in an arbitrary starting position and use the motion tracking 

system to register the position and orientation of the robot as the origin. 
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2. The user uses a joystick controller to fly the blimp to a sequence of arbitrary locations 

and use the motion tracking system to collect associate ground-truth odometry of the 

blimp. 

3. Compare the odometry estimated by the deep learning algorithm with the odometry 

captured by the motion tracking system. 

In order to demonstrate the specification, a PC and a monitor is needed to show real-time data 

output. The specifications can be demonstrated through the following: 

1. Visual Odometry Output: The trajectory estimated using a deep visual odometry 

system will be plot in real-time through MATLAB. 

2. Deep Learning Inference Time: Time consumed for each inference of a pair of input of the 

camera and IMU data will be measured in the software and be printed in the control console. 

3. Visual Odometry Error/Drift:  Mean absolute square error of the estimated visual 

odometry will be calculated and demonstrated in real-time. 

6.  Schedule, Tasks, and Milestones:   

The visual odometry system will be implementing the prototype over the next three months. 

Appendix A contains the Gantt chart with time of major tasks and milestones. The Gantt chart 

delineated the associated start and end date of each tasks. Appendix B is a skill matrix and detailed 

the responsibility over tasks depending on the skills required by the task. 

7. Marketing and Cost Analysis 

Marketing Analysis is omitted due to this is an ECE senior design project.  
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7.1 Cost Analysis 

The implementation cost for the software would none due to the fact that all software packages 

are open source and available as free. The training data will be acquired by the design team 

through experimentation. This would also be free as the motion capture system is already 

available in the lab. 

The equipment cost would come as a large portion of cost and is outlined in Table 4 and the 

development cost for the blimp is outlined in Table 5. 

Table 4. Equipment Cost of the System 

Product Description Quantity per Blimp Unit Price ($) Total Price ($) 

Arduino Fio 1 29.65 26.95 

Custom PCB and 

Components 

1 40 (Estimated) 40 

TB6612FNG Driver 3 4.95 14.85 

Qx Blade Pic Motor 5 9.99 49.95 

NTSc Camera 1 7.99 7.99 

BNO055 IMU 1 9.95 9.95 

Helium Gas 1 (Liter with Tank) 45.25 45.25 

Total Cost / Blimp   194.94 
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Table 5. Development Cost of the System 

Description Labor Hour (hr) Labor Cost ($) 

Visual Odometry Estimator    

Training data acquisition 10 400 

Neural Network Implementation 40 1600 

IMU installation and acquisition 40 1600 

Sensor fusion 40 1600 

Simulated Testing   

Construction of Simulation 

Environment 

50 2000 

Adaption of algorithm into the 

simulated environment 

60 2400 

Verification on Hardware   

Adaptation of algorithm to blimps 

platform 

50 2000 

Analysis of experiment outcome 20 800 

Revision of algorithms 60 2400 

TOTAL 370 14,800 
 

The total development cost would be around $15,000. Since the design is a software product, instead 

of production runs that produces individual physical components, the design could be sold as 

subscription services that charges customers annually. To set the price, we consider the price of 

fringe benefit (30%), sales expense (8%), and technical support for the software package ($20/hr and 

approximately each sale requires 5 hour of support). Table X outlines the Assuming 1000 copies of 

software are sold over 5-year period, the total cost would go to 15000 × (1 + 30% + 8%) +

1000 × 5 × 20 = $120700. To achieve a profit of $50 per unit, the price would be set at 

120700/1000 +  50 ≈ $170 
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8. Current Status 

Currently, the team has mainly in contact with a PhD student (Tony Lin) of the faculty advisor, 

Fumin Zhang. Literature research on related areas of the project topic has been performed. Team 

members have met and gained basic experience of controlling the blimp via a joystick. Currently, 

each team member is picking up related software including TensorFlow, ROS, and OpenCV, if 

he or she does not have related experience.  

9. Leadership Roles 

According to the specialty of each team member, different leadership roles are assigned as in Table 

6. 

Table 6. Leadership Roles 

Fanzhe Lyu 1. Software Lead 

2. Testing Lead 

Ruoyang Xu 1. Director of Communications 

2. Hardware Lead 

3. Webmaster 

Yifan Shen 1. Documentation Coordinator 

2. Expo Coordinator  

Yilun Xie 1. Design Lead 

2. Testing Lead 
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