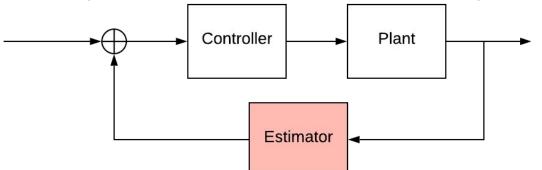
Visual Inertial Odometry for Miniature Autonomous Blimp

Senior Design Team XXLs - Jan 22

Potential Applications

- 1. Crowded environment deployment such as airport and metro human traffic monitoring.
- 2. Patrolling large indoor area such as warehouse, and factory.

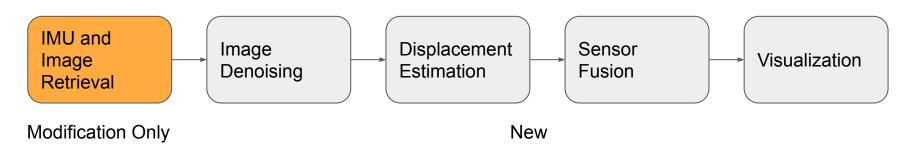


Problem Statement

- Potential for larger indoor environment deployment.
- Limited by external localization system.
- Visual Odometry is a good choice considering the Blimp's payload capacity.
- IMU is added to compensate for the lack of scale in VO.

• Goal: Enhance navigation capability of blimp via Visual Inertial Odometry.

3

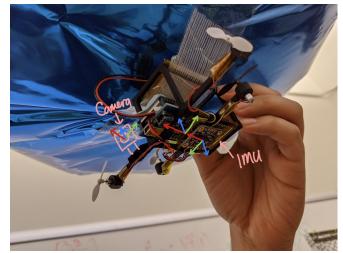

Presentation Structure

- Final Deliverables
- Task Breakdown
 - Hardware and Firmware Modification
 - Camera Calibration
 - Image Processing and Denoising
 - Conventional Visual Odometry
 - Feature matching to essential matrix
 - Essential matrix to homogeneous transformation
 - Sensor Fusion
 - Visualization
- Demo
- Schedule and Gantt Chart

Final Deliverables

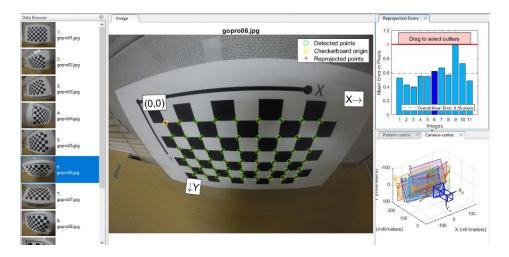
Series of ROS Nodes performing following functions:

- 1. IMU and Image Retrieval
- 2. Image Denoising & Augmentation
- 3. Feature Detection and Displacement Estimation
- 4. Sensor Fusion
- 5. Visualization



Hardware & Firmware: Xu

- Data to be retrieved
 - Image-Displacement (Optitrack) Pair for VO
 - Linear acceleration and angular velocity data (IMU)
- Blimp-side
 - \circ Data retrieval from IMU through I²C
 - IMU data transmission through serial to ground station
- ROS-Side
 - IMU Data retrieval
 - Static transform tree for IMU, camera, blimp center
 - Transform publisher for map frame twist message to blimp frame twist


 $\Delta \mathbf{x} = \mathbf{x_{t+1}} - \mathbf{x_t}$ and image at time t

Camera Calibration: Lyu

- Sample images of Chessboard
- Camera Matrix (K)

Remove Lens Distortion

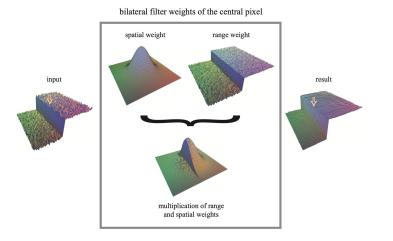
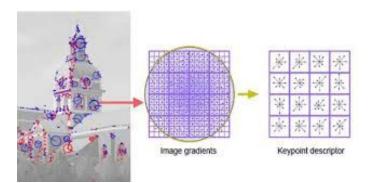
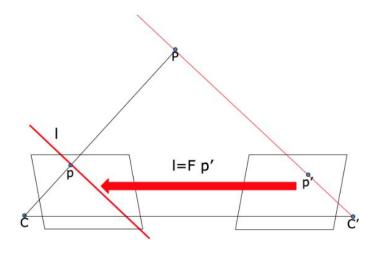


Image Processing: Shen

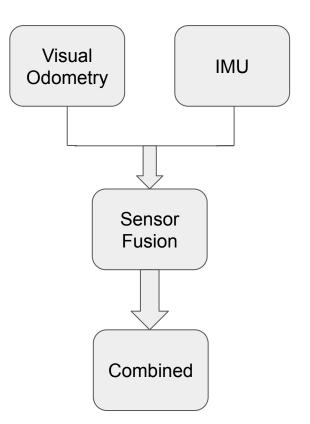
• Why Denoising?


- Bilateral Filter
 - Edge Protection
 - Spatial & Range
- Median Filter
 - Median of nearby pixels

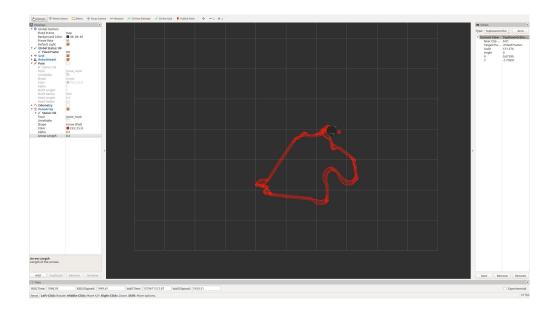


Conventional Visual Odometry: Xie

- 1. Feature Extraction (Harris Corner Detector & SIFT Feature Descriptor)
- 2. Feature Matching (Nearest Neighbor Distance Ratio Test)
- 3. Fundamental Matrix Estimation (Least Squares Optimization with RANSAC)
- 4. Essential Matrix Calculation (E = K' * F * K)
- 5. Essential Matrix to Transformation (Lyu)



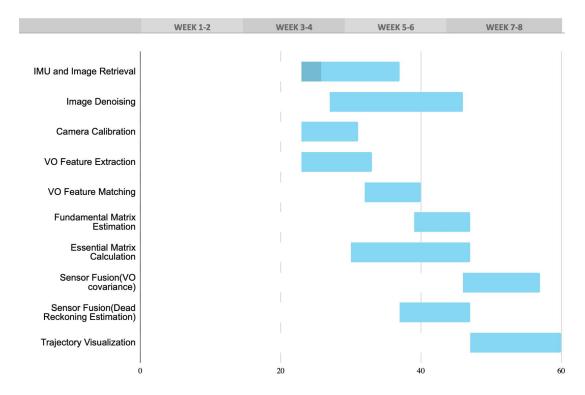
Simplified Sensor Fusion: Xu


- Merge VO and IMU to produce pose estimation.
- Approach
 - Calculate VO covariance by comparing visual odometry data with ground truth odometry from Optitrack system. IMU covariance from datasheet.
 - Weighted sum of measurements.
 - Dead Reckoning to produce pose estimation.
 - Not using kalman filter because system identification would be needed.

Visualization: Shen

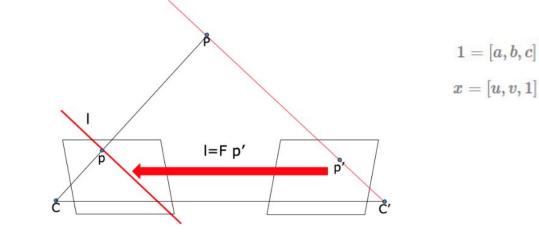
- ROS node subscribing to current position, and publishing visualization message to rviz (world frame).
- 2. Rviz config file to launch with specified visualization enabled.

Demo Plans


- Location
 - Requested demo place to be inside McCamish to Dr. Frazier. Will update once we heard back.
- Content
 - Control blimps through joystick, plot estimated pose on laptop to show the capability of visual inertial odometry.
 - Allow visitors to control the blimp.
 - Attach wire to blimp for safety concern.

Tentative Schedule

TASK NAME	START DATE	END DATE	DURATION* (WORK DAYS)	TEAM MEMBER	PERCENT COMPLETE
IMU and Image Retrieval	1/23	2/5	14	Ruoyang	20%
Image Denoising	1/27	2/14	19	Yifan	0%
Camera Calibration	1/23	1/30	8	Fanzhe	0%
VO Feature Extraction	1/23	2/1	10	Yilun	0%
VO Feature Matching	2/1	2/8	8	Yilun	0%
Fundamental Matrix Estimation	2/8	2/15	8	Yilun	0%
Essential Matrix Calculation	1/30	2/15	17	Fanzhe	0%
Sensor Fusion(VO covariance)	2/15	2/25	11	Ruoyang	0%
Sensor Fusion(Dead Reckoning Estimation)	2/6	2/15	10	Ruoyang	0%
Trajectory Visualization	2/16	2/28	13	Yifan	0%


Gantt Charts

Appendices

- Math behind Fundamental Matrix Estimation
- Fundamental Matrix to Homogeneous Transformation
- Sensor Fusion

Fundamental Matrix Estimation (least square problem)

 $x_0^T F x_1 = 0 \qquad \begin{bmatrix} u_0 & v_0 & 1 \end{bmatrix} \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix} = 0 \quad d(l, x) = \frac{au + bv + c}{\sqrt{a^2 + b^2}} \quad (F) = \sum_{i}^n \left(d(Fx_1^i, x_0^i)^2 + d(F^Tx_0^i, x_1^i)^2 \right)$

Essential Matrix to Homogeneous Transformation: Lyu

 $E = U \Sigma V^T$ Singular Value Decomposition $W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $t = VW\Sigma V^T$ $R = UW^{-1}V^T$ $T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}$

Idea: Find out Epipolar error is minimized

https://people.eecs.berkeley.edu/~ yang/courses/cs294-6/lectures/lec 7-Sept20.ppt

Sensor Fusion

• Weighted sum of VO and IMU data through standard deviation

$$\begin{split} \boldsymbol{\xi}_{fin} &= \sigma_3^2 (\sigma_1^{-2} \boldsymbol{\xi}_1 + \sigma_2^{-2} \boldsymbol{\xi}_2) \\ \sigma_3^2 &= \left(\sigma_1^{-2} + \sigma_2^{-2}\right)^{-1} \end{split}$$

• Central Limit theorem, based on noise deviations.

Notes

- 1. Challenges
- 2. Extension to VIO
 - a. Stories wanted to solve

3.

