
Deep Visual Odometry for 3D Mapping

Name: Ruoyang Xu, Advisor: Fumin Zhang, Group Name: XXLs (Team 30)

Introduction

Mobile robotic platforms are achieving their level of automation via intelligent navigation capabilities and
self-awareness of its motion and location is crucial to its success. Visual odometry is the process of
determining such information through visual inputs. Deep visual odometry is the machine learning approach
to this problem and exceed conventional visual odometry techniques in terms of end-to-end capabitlies.
This technical review briefly summarizes some existing application of deep visual odometry, and underlying
concepts of this technology and provides ideal implementation conditions for this technology.

Commercial Application of Deep Visual Odometry

Due to the software nature of visual odometry and its reliance on fast hardware, until the early 2010s, appli-
cation of visual odometry primarily exists in the fields of academia and pure research, with the application
on martian rover being the most prominent[1]. Recent application utilizing visual odometry orients around
autonmous car and drone companies. Skydio uses 13 cameras to perform its visual based simultaneous
localization and mapping task, which is a combination of visual odometry and localisation task and puts the
price of the entire drone at $1999 [2]. A competing company of Skydio, DJI, annouced a hardware platform
for visual odometry platform research priced at $1249 [3, 4] in 2015.

Despite the availability of hardware platforms for deep and conventional visual odometry algorithms, odom-
etry methods rarely exists as a standalone ready-to-ship products. The majority of design comes as a
proprietary part of bigger product such as those for Skydio and DJI, and other designs are released as
open-source projects aimed at promoting research in thie field. SfMLearner is an deep visual odometry
project open-sourced on GitHub done by Google. This work features in its ability to conduct unsupervised
deep learning and generating depth data with single-view camera [5]. OpenVSLAM is another open-sourced
GitHub project for building visual odometry research with fully modular design and compability across
multiple camera models as its primary feature. [6].

Underlying Technology for Deep Visual Odometry

Deep visual odometry aims at utilising machine learning techniques to solve visual odometry methods.
Conventional visual odometry revolves around a multi-stage process that the pipeline detects feature points
in a series of visual inputs, match the feature points between consecutive images and attempts to estimate
motion updates from the change in feature points inbetween visual inputs.

Wang et, al. proposed an end-to-end method for deep visual odometry in 2017 [7] that uses two different
types neural network in sequence in an attempt to solve the entire multi-stage process in the same framework.
This framework utilized a number of convolutional neural network for capturing image features and directly

1

outputs the feature vector into a recurrent neural network. The recurrent neural network then outputs the
most probable pose estimation of the camera position which effectively contains the odometry information
of the robot.

A 2D convolutional neural network extracts its feature by convolving a 2D matrix over input matrix and
any images that has a match to the learned kernel inside the neural network would outputs a high value in
convolution and therefore forms a feature vector. A recurrent neural network accepts the input of t = τ as
well as t = τ − 1 so temporal continuity is taken into consideration. A recurrent neural network outputs in
the fashion that for every output at t = τ it generates a set of most probable output for t = τ + 1 and select
the most possible result for the next timestep.

Other techniques in deep visual odometry includes using k-nearest neighbour(k-NN) and support vector
machine(SVM) to capture the feature changes in optical flow [8]. k-NN and SVM are both supervised
classification algorithms, where k-NN determines the class of one particular feature vector based on the class
of its neighbors in high dimensional plane and SVM classifies data set by placing a hyperplane that separates
classes of different data.

Implementation of Deep Visual Odometry

Software Implementation

The implementation of a deep visual odometry for the blimps robot will revolve primary in the software.
Either adoping an end-to-end framework or a non end-to-end framework, machine learning algorithms are
required and several software packages are needed to implement these algorithms. TensorFlow and PyTorch
are the dominant machine learning packages for implementing a machine learning algorithm [9, 10].

Simulated and Real Life Testing

Benchmarking the implemented algorithm requires a testing ground and simulated environment such as
Gazebo used in conjunction with ROS provides a platform for both running and testing the algorithm [11].
The final deployment of the result is expected to run on the Blimps platform that is already constructed in
the lab, see project description.

Design Constraint By Limitation of Hardware Platform

Due to the limit of final deployment being a light-weight mobile platform (a small indoor Blimps), consid-
erable design choices are limited. A light-weight mobile platform limits the on-board computation ability
and effectively eliminates the possibility of any online/adaptive algorithms. Options include minimizing
and approximating the final implementation to be computation light-weight or design the system so that it
transmits any inforamtion to remote workstation.

2

References

[1] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odometry on the mars exploration
rovers,” J. Field Robotics, vol. 24, pp. 169–186, 03 2007.

[2] L. Z. Wei, “Lessons for deep-tech startups from skydio, the autonomous drone company,” Feb
2018, accessed: 2019-09-29. [Online]. Available: https://medium.com/zhanwei/lessons-for-deep-tech-
startups-from-skydio-the-autonomous-drone-company-61fa890ea990

[3] Stever, “Dji matrice 100 & dji guidance announced,” Jun 2015. [Online]. Available:
https://www.heliguy.com/blog/2015/06/09/dji-matrice-100-dji-guidance-announced/

[4] G. Zhou, Lu Fang, Ketan Tang, Honghui Zhang, K. Wang, and K. Yang, “Guidance: A visual
sensing platform for robotic applications,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), June 2015, pp. 9–14.

[5] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth and ego-motion
from video,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017, pp. 6612–6619. [Online]. Available: https://github.com/tinghuiz/SfMLearner

[6] S. Sumikura, M. Shibuya, and K. Sakurada, “OpenVSLAM: A Versatile Visual SLAM Framework,”
in Proceedings of the 27th ACM International Conference on Multimedia, ser. MM ’19. New York,
NY, USA: ACM, 2019. [Online]. Available: https://doi.org/10.1145/3343031.3350539

[7] S. Wang, R. Clark, H. Wen, and N. Trigoni, “Deepvo: Towards end-to-end visual odometry with deep
recurrent convolutional neural networks,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), May 2017, pp. 2043–2050.

[8] A. Kreimer, “Algorithms for visual odometry,” Ph.D. dissertation, Israel Institute of Technology, 2019.

[9] M. A. et al., “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer, “Automatic differentiation in PyTorch,” in NIPS Autodiff Workshop, 2017.

[11] B. Gromov and J.-H. Ryu, “Implementation of semi-virtual multiple-master/multiple-slave system,” 10
2013, pp. 243–246.

3

