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Executive Summary 

The goal of our project was to design a multi-channel audio digitizer at a cost that made the 

device affordable to individual hobbyists and developers. Our project was based on a similar 

project that was completed in 2014 - a link to the previous project is provided in the appendix. 

While devices that can sample audio data on multiple channels already exist in the market, they 

are often too expensive for individual developers to purchase. While we were confident in our 

ability to make a functioning, low-cost device, we found the project intriguing and knew that it 

would expose us to technologies and skills that could help prepare us for jobs in industry or 

academia. For these reasons, we decided to pursue this project to fulfill our senior design 

requirement. 

Our design included low-cost, off-the-shelf components, and we have also made our source 

hardware and software designs easily accessible and open source. By estimating labor costs and 

overhead, we calculated the cost to produce this device to ~$8,041, with the components costing 

~$201. The two main components in our design were an analog to digital converter (ADC) that 

was responsible for capturing audio data, and a USB chip that was responsible for converting the 

digitized audio data to something that could be transmitted via USB.  

Unfortunately, while we proved aspects of both our hardware and software were functional, we 

were unable to read any data through our USB device given a labelling error on our schematic, 

which will be detailed later in this report. That being said, we were able to confirm that we could 

initialize all components of our design, see one channel of audio data output from the ADC, and 

affect the sampling rate of the hardware through software. 
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Single-Channel Audio Digitizer 

  

1.        Introduction 

Team Audio Synthesizers is requesting $201 in funding to develop a multi-channel audio 

digitizer. The funding would be used for hardware development and production.   

1.1 Objective 

The goal of this project was to develop a multi-channel audio digitizer that was cheaper than 

alternatives in the market. Our design included developing a functional printed circuit board 

(PCB) and software that could communicate with that board. Given our hardware and software 

designs are open source, hobbyists and developers can access those designs and change them to 

suit their specific needs. 

1.2 Motivation 

The consumers of this device want a technology that can sample multiple channels of audio 

simultaneously and output a .wav file that replicates what was heard through the stereo speakers 

[1]. Ideally, this device will be easy to use; the end consumer will not have to care about the 

internals of the device. The end user would need to tell the device to listen to audio for a certain 

length of time, and subsequently listen to the file produced by the C++ code. The device should 

be cheaper than the alternatives that already exist, which enables more people to be able to 

purchase this device. 
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1.3 Background 

Our design used the CS5368 audio AD codec from Cirrus Logic. This device is capable of 

sampling audio at rates up to 192 kHz and can transmit eight channels of audio data within one 

serial data stream. [10] Analog Devices makes several AD converters that provide similar 

functionality. One such example is AD7264. This converter is a high-speed device that needs a 

5V power supply to operate. The throughput on this chip goes up to 1Msps. [14] Texas 

Instruments also offers a similar ADC named ADS1274. This device is a 24-bit ADC that is a bit 

slower than the Cirrus Logic chip, operating with sampling rates up to 144 ksps. It also supports 

simultaneous sampling of four channels instead of eight. [15] 

2.         Project Description and Goals 

Our group developed a device that has the necessary components to meet our goals. However, 

due to a schematic error, we were unable to sample audio data through the USB chip. Therefore, 

we could not demonstrate working functionality of any portions of the software that were 

downstream of that functionality. We were able to: 

• Initialize all components of our design properly 

• Verify the Cirrus Logic ADC could sample and transmit audio data 

• Verify that we could affect the sampling rate of the ADC through software 

• Sample data at rates up to 96 kHz 

• Verify the audio data passed through the flip flop and made it to the USB chip 

We were unable to: 

• Read audio data from the USB chip due to a schematic error 
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• Verify we could sample multiple channels of audio simultaneously (although we 

have no reason to believe our design would not allow us to do so) 

• Convert the audio data into a wave file (we have code in place to format data 

received from the USB chip, but we never tried outputting a wav file due to our 

focus on getting the USB chip to read) 

• Sample audio at rates up to 192 kHz (although we have no reason to believe our 

design would not allow us to do so) 

3. Technical Specifications & Verification 

• USB interface from device to Windows PC 

• Developed code in C++ instead of the proposed Python3 

Multichannel Audio Synthesizer  

2020 August 2   

Technical Specifications   

   

 Proposed Quantitative 

Specification Quantitative Goal 

 Goal Demonstrated 

   

Sample Rate >= 192k Samples/Second <= 96k Samples/Second 

Channels 8 1 

Bits/Sample 24 or 32 24 

File Format File must be a .wav file  Not Completed 

Powered by USB Yes Yes 
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4. Design Approach and Details 

4.1 Design Approach 

Rather than create our own schematic, we decided to use the schematic that was created by the 

2014 senior design cohort [17]. We decided to use their schematic for a number of reasons: 1) 

We knew from reading the previous group’s final report that their design worked, 2) We walked 

through the schematic and verified to ourselves that it should work, 3) Our group had two people 

compared to the previous group’s five people, and we were also operating with a shorter 

timeline, as the summer semester is shorter than the Fall and Spring semesters. By verifying the 

schematic should work, we saved ourselves time that was more valuable given the shortened 

semester. 

The two main components of this design were the Cirrus Logic CS5398 codec chip, and the 

FTDI FT232H USB chip. Instead of directly purchasing the FT232H chip directly, we purchased 

the development board that had the FT232H chip on it. This development board is named 

UM232H and is sold by FTDI. To synchronize the timing between the ADC and USB chip, we 

inserted a D flip flop between the ADC and the USB. We also added an inverter to make the 

software more understandable. The reset pin on the ADC is active low, but we aimed to toggle 

this reset pin through a GPIO pin on the USB chip. Therefore, when we wanted to reset the 

ADC, we would simply set the GPIO pin high on the USB chip. This signal would then be 

inverted to match the active low nature of the ADC’s reset pin and hold the ADC in reset. The 

software then always contained the logic value of the reset pin instead of the physical value. 

Speaking of GPIO pins, the UM232H chip had four GPIO pins connected to the ADC. One was 

a reset pin, as mentioned above, and the other three were for SPI communication. Those three 

GPIO pins were configured as a SPI clock, SPI data, and chip select. We were able to manually 
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toggle the three GPIO pins dedicated for SPI communication to transmit serial data to the ADC 

using the SPI protocol. 

To test that we soldered our components correctly, and that the PCB was manufactured correctly, 

we used a multi-meter to verify connection integrity. We set the multi-meter to a mode that 

would beep when a connection was present between the two probes connected to the multi-

meter. We completed this testing for every component of our design, including the codec, the 

flip-flop, the inverter, and resistors. Since we never received stereo jacks, we soldered a pair of 

earphones to an audio input on the ADC. We verified these earphones listen to the outside world 

by looking at the signals produced by those channels with the open source software PulseView 

[19]. When all the other components were placed on the PCB, the capacitors were probed by a 

multi-meter to determine whether it matched the estimated range given on the codec datasheet 

[10]. 

Moreover, in our design, we had to replace a 5.1 Ω resistor with a short since the resister never 

arrived in the mail. Seeing as our team was operating under both time constraints and COVID-19 

constraints, we decided to proceed without this resistor. Considering the resistor was so small, at 

only 5.1 ohms, we do not think this had a significant effect on our project. Please find some 

pictures below that showcase different portions of our testing and building process. 
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Fig. 1. This figure is the test of the power line to be sure that the board is being provided with power. 

The whole board was powered by the USB to Computer connection. The next figure shows the 

voltage across a capacitor. 

 

Fig. 2. Voltage across the capacitor matched that which was supplied as expected. 

See the following figures representing the testing process.  
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Fig. 3. Voltage across capacitor with the range of estimated expected values. 

 

Fig. 4. Circuit assembled for first phase of testing. The extending cables are the stereo connector connection onto the surface. 
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 The voltage across certain passive components was probed with a logic analyzer and seen that it 

was within the estimated voltage expected. The audio played through the stereo connector was 

also probed and captured by the logic analyzer. Please reference a video posted on our website 

showcasing this functionality. 

After verifying that components had been soldered correctly, we then began testing our software 

written to interact with our device. Our software was written in C++ and used the .dll driver and 

API provided to us from FTDI to interact with the FT232H chip on the UM232H development 

board. The first responsibility of the software was to properly initialize all components of our 

design. In order to initialize the ADC, we needed to set the Global Control Register (GCTL) to 

tell the ADC to operate in Control Port Mode, which told the ADC to use the external crystal 

oscillator at its clock. Depending on the sampling rate we wished to sample at, we needed to flip 

certain clock division bits in that register. The software properly handled this logic. 

To initialize the flip flop, we just needed to hold the flip flop in reset. A nice design in our 

schematic included tying the chip select pin of the ADC to the reset pin of the flip flop. Since the 

chip select pin on the ADC was active low, as was the reset pin on the flip flop, this would hold 

the flip flop in reset any time we wanted to reinitialize the ADC by modifying its GCTL. 

Lastly, we needed to initialize the USB chip. This included but was not limited to both opening 

and resetting the FT232H chip, which can be done easily through the API provided to us. In 

addition, we set the FT232H chip to operate in FT1248 mode by programming the chip’s 

EEPROM. The EEPROM holds configuration settings that the FT1248 loads upon initialization. 

Holding the flip flop in reset during initialization of the ADC allowed the data lines on the USB 

chip to be initialized with all zeros. When the USB chip is set to operate in FT1248 mode, that 

initialization step initializes FT1248 mode to operate in 8 bit mode, which was ideal since we 
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intended to sample eight channels of audio. In total, there were 5 pins connected from the flip 

flop to the USB chip. Four of the pins held serial data, while the fifth pin was the left-right clock. 

The left right clock differentiates between the two channels of data per pin. This is how we could 

connect four data pins to the USB chip instead of eight. Please reference the two screenshots 

below. The first one shows the output of the executable, and the second one shows the SPI data 

that we send to the ADC during initialization. The second picture shows the open-source 

software PulseView, which reads data from a logic analyzer that we had connected to the SPI 

pins of the USB chip. 

 

Fig. 5. Output from the executable 
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Fig. 6. (a) Software executable writing to the device. (b) Logic Analysis and SPI capture of the device. The data in both figures match. D0 

represents SCLK, D1 represents the data, and D2 represents chip select. 

 

Fig. 7. Noise, which should be around 0, was captured by probing the FTDI RX/TX pins. D0 represents LRCLK, D1 represents SCLK, and D2 

represents the data. 

  

In Figure 7 above, we are probing the FTDI chip’s pins that contain both audio data and audio 

data clocks. You can also note in figure 8 and 9 below that we could double the sampling rate of 

the hardware. This was done through software by initializing the ADC via SPI communication. 

The following two pictures prove not only that SPI communication was working between the 

USB chip and the ADC, but that we could successfully and properly affect the sampling rate of 

the ADC through software.  
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Fig. 8. Frequency of LRCLK doubling verified by logic analysis. The period changed from 41 µs to 20.5 µs. 

 

Fig. 9. Frequency of LRCLK used to be half that of figure 8. upon change by software and period used to be approximately 41 µs. 

  

We have demonstrated what we accomplished; now, we would like to detail where our design 

fell short. As stated earlier, we were unable to sample data using FT1248 mode on the FT232H 

chip. We narrowed this down to one key error in our schematic and ultimately found two issues 

with our schematic (and therefore also the 2014 group’s schematic). The first issue was that the 
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inverter was incorrectly labelled. The inverter was labelled to invert RST_bar to RST when it 

should have been inverting RST to RST_bar. This error made it impossible for us to hold the 

ADC in reset. The second issue was that the AC1 pin on the FTDI chip was labelled RST_bar. 

The pin should have been labelled RST. Because the inverter was backwards, we did not have 

any control over RST_bar. However, if we did, we still would have wanted to the AC1 pin to be 

RST instead of RST_bar. The AC1 pin on the UM232H device corresponded to the slave select 

pin (SSn) in FT1248 mode. Since we could not control the SSn pin, we could not activate 

FT1248 mode, which meant we could never read audio data into the FT232H chip. Even if we 

had been able to control the SSn pin, we would have wanted to set the pin to the value of RST, 

instead of RST_bar, since the SSn pin was active low. You can see in Figure 10 that we read 

zero bytes of data from the device, which is a result of these two labelling/wiring mistakes. 

A future team could stand to correct these two mistakes we made or decide to rewire the 

UM232H device to use a different mode on the FTDI chip. We did not need to use FTt1248 

mode but found it was suitable for our needs. 
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Fig. 10. Last statement informs user that RX transmission has not occurred indicating that data was not found to be read. However, logic analysis 

reveals existence of data. 

4.2 Codes and Standards 

The driver was written in C++ and complies to C++ standards [16]. We used the USB 2.0 

protocol to transfer data over the USB cable. The entire USB protocol was handled on the FTDI 

chip, so that was abstracted away from us. We also used SPI to communicate with the ADC. 

4.3 Constraints, Alternatives, and Tradeoffs 

We did not need to use USB 2.0 to interface with the Windows computer. However, we chose to 

do so to increase the bandwidth of the connection to 480 Mbps. Other serial interfaces can be 

limited to 115 kbps. Also, almost every modern computer has a USB jack, which allows our 

device to work with almost any computer. 

We also chose to use FT1248 mode. We could have chosen a different mode in our design. 

While we chose FT1248 mode, this mode limited us to use a single channel FT232H due to the 

pinout needed to operate FT1248 mode. If we had chosen a different mode, the chip could have 

read audio data while it was transmitting data via SPI. Instead, our device could only do one of 

those things at a time. 

Our last design tradeoff was using the UM232H instead of the FT232H chip directly. Using the 

development board made the device more expensive, but it also made the device more easily 

configurable. 

Lastly, the group members and professor were in three different time zones in two different 

countries and had to operate while COVID-19 safety protocols were in place. None of the three 

people involved in this project (Joe, Moradeke, and Dr. Smith) were in the same place at the 
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same time. Communication across multiple time zones proved difficult at times, and there were 

often delays in development since some of the development needed to be done in parallel. Joe 

also did not have access to a full hardware setup. Moradeke was the only one that had a PCB, so 

much of the software testing was time consuming and inefficient, and there was only so much 

testing that could be done without the representative device. 

5. Schedule, Tasks, and Milestones 

Joseph Farnham was the software developer. He was responsible for creating the software to 

initialize and communicate with the hardware. He wrote the C++ code that leveraged the FTDI 

driver and API. His software was Windows specific and was provided to the outside world in the 

form of an executable. Joe was also the Webmaster. Software risks included incorrectly 

configuring the chips, which could have bricked them. 

Moradeke Olumogba was the hardware developer. She was responsible for verifying the 

previous team’s schematic, ordering the physical parts, outsourcing manufacturing the PCB, and 

soldering components onto the PCB. She was also responsible for using the logic analyzer and 

PulseView to probe and decode various SPI and audio data. Oliver Mattos, mentioned on the title 

page, helped Moradeke with soldering the ADC, and provided the logic analyzer [18] that we 

used. He also helped Moradeke convert our schematic into Gerber files. Her risks included but 

were not limited to incorrectly soldering components onto the PCB and shorting two connections 

during testing which could have bricked a board. 

6.  Final Project Demonstration 

We showcased four features of our design in the final demonstration. 
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• We can initialize the ADC and USB chips properly 

o During testing, we demonstrated this functionality through our ability to send SPI 

communication from the UM232H to the ADC chip 

o Seeing that we could affect the sampling rate of the hardware through software 

proved at a system level that the initialization process was working 

• We can receive and transmit audio data from the ADC 

o We verified this with a logic analyzer and PulseView 

• The audio data transmitted from the ADC makes its way through the flip flop to the USB 

pins 

o We verified this with a logic analyzer and PulseView 

• We can affect the sampling rate of the ADC through software 

o We took two samples of audio data with the logic analyzer and PulseView. The 

first sample included one sampling rate, and the second sample included data 

doubled at twice the speed of the first sample. We then verified the frequency of 

the LRCLK matched the sampling rate we set in software for both samples. 

Our Final Presentation includes our Final Demonstration and can be found on our website. The 

link to our website is in the Appendix. 

7. Cost Analysis 

A total of 38 virtual collaborative actual hours were undertaken via Skype. An approximate of 

110 independent work hours were undertaken. An estimated 10 hours of meeting solicitations 

were undertaken with Dr. Smith. This yields an estimated total of 196 working hours. Labor 

costs came to $40/hr * 196 hrs = $7840 
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CS5368-CQZ (x2) $45.64 

SN74AHC273DWR (Flip flop, x5) $2.25 

UM232H (USB chip, x3) $69.63 

Inverter (x10) $3.90 

Resistors & Capacitors ~$13 

Crystal $0.69 

PCB manufacturing $21.44 

USB cable ~$2 

Breadboard ~$10 

Labor ~$7,840 

Tax Costs $32.75 

Total $8,041.30  

 

8.  Conclusion 

While we made progress with our design, we fell short in completing some of the main, 

overarching goals of our project. We were able to initialize the USB chip and ADC properly, 

affect the sampling rate of the ADC through software, and see that audio data was clearing the 

flip-flop and making it to the USB chip. We detailed the schematic changes in a previous section 

of the paper that would need to be made for this device to function as expected. We learned 

valuable lessons in hardware design, including how we need to understand every detail of the 

schematic before we ask for the schematic to be manufactured. If we had understood these 

details better, we would not have run into the hardware issues that we did. 
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Lastly, a future team could opt to use the FT232H chip directly instead of the UM232H 

development board. The device would be cheaper this way, and we have spent enough time with 

the UM232H to say that the development board, although nice to have for prototyping and 

developing, is not necessary for a marketable version of this device. 
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